by rockettj
Last Updated December 06, 2018 15:20 PM

So I'm able to solve the first part of this question correctly with getting $(1-2(2+\frac{2i}{n}))(\frac{2}{n})$. But for the second part which is 'evaluating the sum', I'm not able to figure out what the question is exactly asking for and how to calculate it.

It's not the same as evaluating the limit so this is confusing me a bit.

It will help if someone's able to help me understand this 'evaluate the sum' and how to solve this part of the question.

Thank you!

Without checking the correctness of your representation, you have $$ \frac{2}{n} \left[1 - 2\left(2+\frac{2i}{n}\right)\right] = \frac{2}{n} \left[-3 - \frac{4i}{n}\right] = -\frac{6}{n} - \frac{8i}{n} $$ Therefore, $$ \sum_{i=0}^{n-1} \frac{2}{n} \left[1 - 2\left(2+\frac{2i}{n}\right)\right] = -\sum_{i=0}^{n-1} \frac{6}{n}-\sum_{i=0}^{n-1} \frac{8i}{n} = -6-\frac{8}{n}\sum_{i=0}^{n-1} i $$ Can you finish this?

Updated September 30, 2017 20:20 PM

- Serverfault Query
- Superuser Query
- Ubuntu Query
- Webapps Query
- Webmasters Query
- Programmers Query
- Dba Query
- Drupal Query
- Wordpress Query
- Magento Query
- Joomla Query
- Android Query
- Apple Query
- Game Query
- Gaming Query
- Blender Query
- Ux Query
- Cooking Query
- Photo Query
- Stats Query
- Math Query
- Diy Query
- Gis Query
- Tex Query
- Meta Query
- Electronics Query
- Stackoverflow Query
- Bitcoin Query
- Ethereum Query